

Contents

	Overview
	Project Status

	Installation

	Quickstart

	Documentation

	Development

	Installation

	Usage
	Basic example:

	Dependencies on abstract types

	Dependencies on builtin types

	Explicitly provide arguments

	Setting dependency’s lifetime

	Specify a specific instance

	Get a configured object from the container

	Reference
	smart_injector

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.0.0 (2019-11-20)

Indices and tables

	Index

	Module Index

	Search Page

Overview

Smart-injector is an lightweight dependency injection framework for Python.
It was designed to be an easy to use tool to implement dependency injection in your application in a pythonic way.

Key features are:
- Ligtweight
- pure python
- leverages type annotations
- scopes
- non invasive

Project Status

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/python-smart-injector]

	tests

	
[image: Travis-CI Build Status] [https://travis-ci.org/hlevering/python-smart-injector] [image: AppVeyor Build Status] [https://ci.appveyor.com/project/hlevering/python-smart-injector] [image: Requirements Status] [https://requires.io/github/HLevering/python-smart-injector/requirements/?branch=master]

[image: Coverage Status] [https://codecov.io/gh/HLevering/python-smart-injector]

	package

	
[image: PyPI Package latest release] [https://pypi.org/project/smart-injector] [image: PyPI Wheel] [https://pypi.org/project/smart-injector] [image: Supported versions] [https://pypi.org/project/smart-injector] [image: Supported implementations] [https://pypi.org/project/smart-injector]

[image: Commits since latest release] [https://github.com/hlevering/python-smart-injector/compare/v0.0.6...master]

Installation

pip install smart-injector

You can also install the in-development version with:

pip install https://github.com/hlevering/python-smart-injector/archive/master.zip

Quickstart

Basic Usage:

>>> class A:
... pass
...
>>> class B:
... def __init__(self, a: A):
... self.a = a
...
>>> container = create_container(StaticContainer)
>>> b = container.get(B)
>>> isinstance(b.a, A)
True

Documentation

Detailed documentation can be found here:

https://python-smart-injector.readthedocs.io/

Further usage examples can be found here:
https://python-smart-injector.readthedocs.io/en/latest/usage.html

Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

	Windows

	set PYTEST_ADDOPTS=--cov-append
tox

	Other

	PYTEST_ADDOPTS=--cov-append tox

Installation

At the command line:

pip install smart-injector

Usage

Smart injector provides a bunch of easy-to-use functions and methods, which let you configure your container as
you need it quickly.

Basic example:

from smart_injector import create_container

class A:
 pass

class B:
 def __init__(self, a: A):
 self.a = a

container = create_container()
b = container.get(B)
print(isinstance(b.a, A))

If you have only dependencies on concrete types, no further configuration will be needed and you can use the Di container
as it is.

True

Smart-injector relies on type annotations to resolve dependencies. Therefore type annotated code is a must have, if you
want to use smart-injector efficiently. For many cases smart-injector can resolve dependencies automatically. However,
there are some limitations for the automatic depenendency resolving mechanism.

	dependencies on abstract types

	dependencies on builtin types

	explicitly provide arguments

	setting lifetime of a dependency

	set dependency to a specific instance

These cases need explicitly configuration. Basically, container configuration follows this pattern:

First you define a function which takes one parameter of type smart_injector.Config. Then you provide this
function as a parameter to the factory function smart_injector.create_container(). In your function you can use
the methods provided by the Config object to configure your container. In the next sections we will cover how this is
done in detail.

Dependencies on abstract types

Abstract types (classes that inherit from abc.ABC() and have at least one abc.abstractmethod()) cannot be
instantiated directly. There for it is impossible for smart-injector to resolve these kind of dependencies. An explicit
binding of an abstract class to a concrete class must be configured. This is done by using smart_injector.Config.bind().

from abc import ABC, abstractmethod

class A(ABC):
 @abstractmethod
 def do(self):
 pass

class ConcretA(A):
 def do(self):
 print("Hello")

from smart_injector import Config # not needed but lets you type annotate your configure method

create your own configuration function. This function must take a parameter of type Config
def configure(config: Config):
 # use config's bind method to bind A to ConcretA
 config.bind(A, ConcretA)
 # now if there is a dependency on A ,then an instance of ConcretA will be injected

create an instance of your new defined container
container = create_container(configure)
a = container.get(A)
a.do()

With the above configuration, the container will inject an instance of type ConcreteA, whenever there is a dependency
on A.

Hello

Binding is not restricted to abstract classes. You can bind type A to type B as long as type B is a subclass of type A.
Moreover, it is possible to chain bindings. Let’s take the last example and add one more class.

from abc import ABC, abstractmethod

class A(ABC):
 @abstractmethod
 def do(self):
 pass

class ConcretA(A):
 def do(self):
 print("Hello")

class ConcretB(ConcretA):
 def do(self):
 print("World")

def configure(config: Config):
 config.bind(A, ConcretA)
 config.bind(ConcretA, ConcretB)
 # now everytime when there is a dependency on A then ConcretB will be injected

create an instance of your new defined container
container = create_container(configure)
a = container.get(A)
a.do()

Instead of A an instance of ConcreteA should be used, but since there is a binding from ConcreteA to ConcreteB
effectively there will be inject an instance of ConcreteB.

World

Additionally, you can bind types to functions. For this to work, the function must return either an instance of that
type or an instance of a subclass of that type.

from abc import ABC, abstractmethod

class A(ABC):
 @abstractmethod
 def do(self):
 pass

class ConcretA(A):
 def do(self):
 print("Hello")

class ADependency:
 pass

def concret_a_factory(dependency: ADependency)->ConcretA:
 return ConcretA()

def configure(config: Config):
 config.bind(A, concret_a_factory)
 # now everytime when there is a dependency on A then the object returned by concret_a_factory will be injected

create an instance of your new defined container
container = create_container(configure)
a = container.get(A)
a.do()

In the above example “concrete_a_factory” was called to get an instance of A. In addition, the dependencies of
conrete_a_factory are injected automatically.

Hello

Dependencies on builtin types

Dependencies on builtin types are default constructed by default.

container = create_container()
print(container.get(int))
print(container.get(float))
print(container.get(str))
print(container.get(bytes))
print(container.get(bytearray))

0
0.0

b''
bytearray(b'')

This is rather useful. Therefore, a method for providing values for constructor or function parameters would be useful.

Explicitly provide arguments

You can provide arguments explicitly by configuring your container to do so. Either by specifying values for the arguments
or by specifying a factory function for an argument, which will be called when resolving dependencies.

Values for arguments

Values for arguments can be set with smart_injector.Config.arguments().

class MyClass:
 def __init__(self, a: str, b: int, c: float):
 self.a = a
 self.b = b
 self.c = c

def configure(config: Config):
 # use config's arguments method to provide some arguments
 config.arguments(MyClass, a="hello", b=42, c=1.0)
 # now everytime when there is a dependency on MyClass then MyClass(a="hello", b=42, c=1.0) will be inserted

container = create_container(configure)
a = container.get(MyClass)
print(a.a)
print(a.b)
print(a.c)

In the above example MyClass will be created as MyClass(a=”hello”, b=42, c=1.0).

hello
42
1.0

If arguments are provided explicitly, it is not necessary to provide all arguments. Arguments which are not specified,
are resolved automatically by the DI container .

class Foo:
 pass

class MyClass:
 def __init__(self, a: str, foo: Foo, c: float):
 self.a = a
 self.foo = foo
 self.c = c

def configure(config: Config):
 # use config's arguments method to provide some arguments
 config.arguments(MyClass, a="hello", c=1.0)

container = create_container(configure)
a = container.get(MyClass)
print(a.a)
print(isinstance(a.foo, Foo))
print(a.c)

In the above example no argument for parameter foo was specified. Therefore, the dependency on foo is resolved by the
container. In this case it is a default constructed Foo().

hello
True
1.0

By explicitly providing arguments it is also possible to resolve dependencies without type annotations.

class MyClass:
 def __init__(self, a):
 self.a = a

def configure(config: Config):
 # use config's arguments method to provide some arguments
 config.arguments(MyClass, a="hello")
 # now everytime when there is a dependency on MyClass then MyClass(a="hello", b=42, c=1.0) will be inserted

container = create_container(configure)
a = container.get(MyClass)
print(a.a)

There is no type annotation for MyClass parameter a. Anyhow, the value “hello” is injected correctly for parameter
a.

hello

Note

At the moment only keyword arguments can be provided with arguments. Moreover, you cannot provide the keyword
argument “where” which is used to specify arguments in a specific context (see Context section for further
information).

Setting factories for arguments

Instead of providing values for parameters, it is also possible to define a function which will be called to retrieve the
value for the parameter. A factory for a parameter is set with smart_injector.Config.arg_factory().

class MyClass:
 def __init__(self, a: str):
 self.a = a

def get_a()->str:
 return "hello"

def configure(config: Config):
 config.arg_factory(MyClass, a=get_a)

container = create_container(configure)
a = container.get(MyClass)
print(a.a)

Result:

hello

You can provide any callable as a factory. If necessessary, dependencies of the factory function are injected automatically
by smart_injector. Additionally, if you provide a method of a factory function, smart_injector will create a class instance
and then call that method. (smart_injector will also create and inject all dependencies to create that instance automatically)

class MyInt:
 def get_int(self) -> int:
 return 42

class ProvidesInt:
 def __init__(self, a_int: MyInt):
 self._a_int = a_int

 def get_int(self) -> int:
 return self._a_int.get_int()

class NeedsInt:
 def __init__(self, a_int: int):
 self.a_int = a_int

def configure(config: Config):
 config.arg_factory(NeedsInt, a_int=ProvidesInt.get_int)

container = create_container(configure)
needs_int = container.get(NeedsInt)
print(needs_int.a_int)

Smart_injector creates an instance of ProvidesInt automatically (and it will inject an instance of MyInt into it). Then it
calls method “get_int” of that previously created instance.

42

For this kind of factory methods it is impossible to set arguments for the method explicitly with smart_injector.Config.arguments().

Setting dependency’s lifetime

By default all injected objects have a transient lifetime. That means, that every time when an object is needed a new
instance of that object is created.

class A:
 pass

class B:
 pass

from smart_injector import Lifetime

def configure(config: Config):
 # use config's lifetime method to specify an objects lifetime
 config.lifetime(A, lifetime=Lifetime.SINGLETON)
 # now there will be only one object of type A, which will be inserted wherever an object A is needed
 config.lifetime(B, lifetime=Lifetime.TRANSIENT)
 # everytime a new object B is created. This is the default behaviour for all types

container = create_container(configure)
a1 = container.get(A)
a2 = container.get(A)
b1 = container.get(B)
b2 = container.get(B)
print(a1 is a2)
print(b1 is b2)

b1 and b2 refer to the same object since lifetime of B was defined as SINGLETON.

True
False

It is possible to override the default lifetime for objects created by a container. This must be done when the container
is created.

class A:
 pass

from smart_injector import Lifetime

container = create_container(default_lifetime=Lifetime.SINGLETON)
a1 = container.get(A)
a2 = container.get(A)
print(a1 is a2)

True

Specify a specific instance

If you want a specific instance to be used for a type, you can do that, too. You have specify the instance with
smart_injector.Config.instance().

class A:
 def __init__(self, a: str):
 self.a = a

my_a = A("foo")

def configure(config: Config):
 # use config's instance method to specify that a particular instance shall be used
 config.instance(A, my_a)
 # every time an object of type A is needed, the instance my_a will be returned

container = create_container(configure)
a1 = container.get(A)
print(a1 is my_a)

True

TODO explanation for contexts and where parameter

Get a configured object from the container

When you ask the container to provide you an object of type T by calling smart_injector.StaticContainer.get()
with T, the container will provide and configure the object in a specific way.

Resolving Order

First of all, the container determines, which real type is requested and if a new instance has to be created:

	If an instance of T was set with smart_injector.Config.instance() method, use this instance of T.

	If a binding was specified for T with smart_injector.Config.bind(), use the bounded type instead of T and start again
with a new request with the bounded type.

	If T’s lifetime is singleton(with smart_injector.Config.lifetime() or smart_injector.create_container()
and default_lifetime = smart_injector.Lifetime.SINGLETON, create a new
instance of T at the first request. Return the same instance on every subsequent request.

	If T is a builtin type, than use the type’s default constructor.

	Create a new instance of T.

New Instance Creation

When a new instance of T must be created. The container will resolve all dependencies of T via the following schema:

	Determine all dependencies of T. This means all argument of T’s constructor, if is a class or of T itself if it is a
function.

	Remove all dependencies of T, which were already set with smart_injector.Config.arguments() or
smart_injector.Config.arg_factory().

	Resolve the remaining dependencies by asking the container to resolve each dependency.

	For every argument, for which there was set a factory with Config.arg_factory, call that factory function.
This is done by asking the container to resolve the factory function by calling smart_injector.StaticContainer.get().
Therefore, all dependencies of that factory function are resolved automatically, too.

	Create the new oject of type T with the former resolved dependencies injected.

Reference

	smart_injector

smart_injector

	
smart_injector.create_container(configure: Optional[Callable[[smart_injector.config.user.Config], None]] = None, default_lifetime=<Lifetime.TRANSIENT: 1>, dependencies: Optional[List[object]] = None) → smart_injector.container.container.StaticContainer

	Use this function to create a DI container.

	Parameters

	
	configure –

	default_lifetime –

	dependencies –

	Returns

	

	
class smart_injector.StaticContainer(resolver: smart_injector.resolver.resolver.Resolver)

	DI Container. Used by the user to get instances of types.

To get your own container. Create a new class inherited from this class and override configure method

	
get(a_type: Callable[[...], T]) → T

	Get an instance of type T

	Parameters

	a_type – either a class T or a function returning a T

	Returns

	an instance of T

	
class smart_injector.Lifetime

	Specifies the lifetime for objects created by the container

	Lifetime.SINGLETON

	smart_injector.StaticContainer.get() returns the same every instance on every call

	Lifetime.TRANSIENT

	smart_injector.StaticContainer.get() returns a new instance on every call

	
class smart_injector.Config(backend: smart_injector.config.backend.ConfigBackend)

	Used by the user to configure DI container injection behaviour

	
arg_factory(a_type: Callable[[...], T], where: Optional[Type[T]] = None, **kwargs)

	In difference to arguments():
Instead of providing a value for parameter directly, factory is called
to get the value for the parameter.

	Parameters

	
	a_type –

	where –

	kwargs –

	Returns

	

	
arguments(a_type: Callable[[...], T], where: Optional[Type[T]] = None, **kwargs)

	When creating an object of type T, the provided arguments will be inserted in T’s constructor (if it is a class) or
a_type will be called with this arguments if it is a function.

	Parameters

	
	a_type –

	where –

	kwargs –

	Returns

	

Note

Only keyword arguments are supported

	
bind(a_type: Callable[[...], T], to_type: Callable[[...], S], where: Optional[Type[T]] = None)

	Specify a binding. Whenever an object of type a_type is required, then an object of type to_type will be provided.
For example you can configure, which concrete class shall be used for an abstract base class

	Parameters

	
	a_type – will be replaced by to_type

	to_type – will be used when an object of type a_type is required. to_type must be a subclass of a_type

	where –

	kwargs –

	Returns

	

	
dependency(a_type: Callable[[...], T])

	declare that T is a dependency for the container. When creating the container with smart_injector.create_container()
an instance must be provided for every dependency which was declared.

	Parameters

	a_type –

	Returns

	

	
instance(a_type: Callable[[...], T], instance: T, where: Optional[Type[T]] = None)

	set an instance of type T which is returned whenever an object of type T is requested

	Parameters

	
	a_type –

	instance –

	where –

	Returns

	

	
lifetime(a_type: Callable[[...], T], lifetime: smart_injector.lifetime.Lifetime, where: Optional[Type[T]] = None)

	Specify the lifetime for an object of type T. See smart_injector.Lifetime()

	Parameters

	
	a_type –

	lifetime –

	where –

	Returns

	None

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/hlevering/python-smart-injector/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

Smart Injector could always use more documentation, whether as part of the
official Smart Injector docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/hlevering/python-smart-injector/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up python-smart-injector for local development:

	Fork python-smart-injector [https://github.com/hlevering/python-smart-injector]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:hlevering/python-smart-injector.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes run all the checks and docs builder with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/hlevering/python-smart-injector/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	Hendrik Levering - https://github.com/HLevering

Changelog

0.0.0 (2019-11-20)

	First release on PyPI.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 smart_injector	

Index

 A
 | B
 | C
 | D
 | G
 | I
 | L
 | S

A

 	
 	arg_factory() (smart_injector.Config method)

 	
 	arguments() (smart_injector.Config method)

B

 	
 	bind() (smart_injector.Config method)

C

 	
 	Config (class in smart_injector)

 	
 	create_container() (in module smart_injector)

D

 	
 	dependency() (smart_injector.Config method)

G

 	
 	get() (smart_injector.StaticContainer method)

I

 	
 	instance() (smart_injector.Config method)

L

 	
 	Lifetime (class in smart_injector)

 	
 	lifetime() (smart_injector.Config method)

S

 	
 	smart_injector (module)

 	
 	StaticContainer (class in smart_injector)

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Project Status

 		
 Installation

 		
 Quickstart

 		
 Documentation

 		
 Development

 		
 Installation

 		
 Usage

 		
 Basic example:

 		
 Dependencies on abstract types

 		
 Dependencies on builtin types

 		
 Explicitly provide arguments

 		
 Values for arguments

 		
 Setting factories for arguments

 		
 Setting dependency’s lifetime

 		
 Specify a specific instance

 		
 Get a configured object from the container

 		
 Resolving Order

 		
 New Instance Creation

 		
 Reference

 		
 smart_injector

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 0.0.0 (2019-11-20)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

